怎样解这个三角函数?sin^2 a+cos^2 a=112/13cosa-5/13sina=4/5

问题描述:

怎样解这个三角函数?
sin^2 a+cos^2 a=1
12/13cosa-5/13sina=4/5

对于“12/13cosa-5/13sina=4/5 ”,两边乘65并移项:60cosa=25sina+52 ,
平方得:3600[1 - (sina)^2] = 625(sina)^2 + 2600sina + 2704 ,移项得:
(65sina - 16)(65sina + 56) = 0 ,sina = 16/65 或 -56/65 ,对应地 ,
cosa = 63/65 、33/65