若log9x*log43=(log34+log43)^2-(log43/log34+log34/log43),则x=多少
问题描述:
若log9x*log43=(log34+log43)^2-(log43/log34+log34/log43),则x=多少
答
log9x*log43=(log34+log43)^2-(log43/log34+log34/log43)log9x*log43=(log34)²+(log43)²+2-[(log34)²+(log43)²]log9x*log43=2log9x=2log341/2log3x=log3 16x^(1/2)=16x=256