已知函数f(x)=|x+1|+|x+2|+...+|x+2010|+|x-1|+|x-2|+...+|x-2010|(x属于R)则使f(a-1)=f(a^2-3a+2)成立的a值有几个?A2个B3个C4个D无数个为什么说因为是偶数项就选D
问题描述:
已知函数f(x)=|x+1|+|x+2|+...+|x+2010|+|x-1|+|x-2|+...+|x-2010|(x属于R)则使f(a-1)=f(a^2-3a+2)成立的a值有几个?A2个B3个C4个D无数个为什么说因为是偶数项就选D
答
该函数可以看成坐标直线上点x到-1,-2,...-2010,1,2,...2010这4020个点的距离之和,只要x位于[-1,1]这一区间内,其值为一定值(自己算吧),所以只需联解-1≤a-1≤1,-1≦a²-3a+2≦1即可.这也算是特值法吧
因为是偶数才会满足x在[-1,1]区间距离之和为定值,即x到-1,1距离和为2,x到-2,2距离和为4,以此类推,然后才有后面的不等式组成立,解出来就是无数了,结果你自己算吧