快,帮我解一下三元一次方程,(1)x+y-z=11; y+z-x=5; z+x-y=1(2) x+y+z=10;x+3y+2z=17;2y-x+3z=8

问题描述:

快,帮我解一下三元一次方程,
(1)x+y-z=11; y+z-x=5; z+x-y=1
(2) x+y+z=10;x+3y+2z=17;2y-x+3z=8

(1)(1),(2)式相加y=8,x-z=3,z+x=9,x=6,z=3
(2)(2)-(1),2y+z=7,(2)+(3),y+z=5,y=2,z=3,x=5

(1)x+y-z=11; y+z-x=5; z+x-y=1
三式相加x+y+z=17
分别减去得
x=6;y=8;z=3
(2) x+y+z=10;x+3y+2z=17;2y-x+3z=8
三式相加x+6y+6z=35;y+z=5
故有
x=5;y=2;z=3

(1)X+y—Z=11 + Y+Z—X=1推出Y=8 Y+Z—X=5 — Z+X—Y=1推出X=6 把X,Y 的值带入1式中得Z=3 (2)把1式乘以2 (4)—2式得X—Y=3(5),再拿(4)—2Y—X+3Z=8得3X—Z=12(6) (5)(6)联立把X+Y+Z=10带入(6)式得3Y+9—(10—X—Y)=12再把X换成X=Y+3求得Y=2 X=5 Z=3