一个扇形和一个圆的面积相等,且扇形半径是圆的半径的3倍,则扇形的圆心弧度数为______________

问题描述:

一个扇形和一个圆的面积相等,且扇形半径是圆的半径的3倍,则扇形的圆心弧度数为______________

扇形面积: S扇=W*π(3R)^2/2π[W为弧度数,设扇形面积为3R]
有圆面积: S圆=πR^2
已知S扇=S圆,有W*π(3R)^2/2π=πR^2,化简得:
W=2π/9rad=40°

派r*r=0.5A*3r*3r
A=2派/9

设,扇形半径为R,圆的半径为r,n为扇形的圆心弧度数,则有
扇形的弧长=圆的周长=C=2∏r,
S扇形=S圆面积,
而,S扇形=n∏*R^2/360=1/2*扇形的弧长*R,
R=3r,r=R/3.
即有,n∏*R^2/360=1/2*2∏r*R=1/2*2∏*R/3*R,
n=120度.