如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足______时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
问题描述:
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足______时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
答
由定理可知,BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,
而PC⊂平面PCD,∴平面MBD⊥平面PCD.
故选DM⊥PC(或BM⊥PC等)
答案解析:由题意要得到平面MBD⊥平面PCD,容易推得AC⊥BD,只需AC垂直平面MBD内的与BD相交的直线即可.
考试点:平面与平面垂直的判定.
知识点:本题考查直线与平面平行与垂直的判定,考查空间想象能力,逻辑思维能力,是基础题.