莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.

问题描述:

莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.
(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?
(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.

设原计划零售平均每天售出x吨.
根据题意,得

200
6+x
200
6+(x+2)
=5,
整理,得x2+14x-32=0,
解得x1=2,x2=-16.
经检验,x=2是原方程的根,x=-16不符合题意,舍去.
答:原计划零售平均每天售出2吨.
(2)
200
6+2+2
=20
(天).
实际获得的总利润是:
2000×6×20+2200×4×20=416000(元).
答:实际获得的总利润为416000元.
答案解析:(1)设原计划零售平均每天售出x吨,根据去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务可列方程求解.
(2)求出实际销售了多少天,根据每天批发和零售多少吨,以及批发每吨获得利润为2000元,零售每吨获得利润为2200元,可求得利润.
考试点:分式方程的应用.

知识点:本题考查理解题意的能力,关键设出计划零售多少,以时间做为等量关系列出方程.第2问关键是求出天数,求出批发的利润和零售的利润,可求出总利润.