如图,在等腰三角形ABC中,AB=AC,M为边BC的中点,D、E分别为边AB、AC上的点,且AD=AE,连结MD、ME.试用半透明的纸描图,用折叠法判断:(1)△MDE是不是等腰三角形?(2)整个图形是不是轴对称图形?如果是,画出对称轴.
问题描述:
如图,在等腰三角形ABC中,AB=AC,M为边BC的中点,D、E分别为边AB、AC上的点,且AD=AE,连结MD、ME.试用半透明的纸描图,用折叠法判断:
(1)△MDE是不是等腰三角形?
(2)整个图形是不是轴对称图形?如果是,画出对称轴.
答
(1))△MDE是等腰三角形.
理由:∵AB=AC,
∴∠B=∠C.
∵M为BC的中点,
∴BM=CM.
∵AB=AC,AD=AE,
∴BD=CE.
在△DBM和△ECM中,
∴BD=CE,∠B=∠C,BM=CM.
∴△DBM≌△ECM.
∴MD=ME,即△MDE是等腰三角形;
(2)整个图形是轴对称图形,对称轴如图所示:
答案解析:(1)因为AB=AC,M为BC的中点,AD=AE,所以得出∠B=∠C,BM=MC,BD=CE,从而利用SAS判定△DBM≌△ECM,即得出MD=ME;
(2)根据轴对称图形的性质即可得出结论.
考试点:作图-轴对称变换.
知识点:本题考查的是作图-轴对称变换,熟知轴对称图形的性质是解答此题的关键.