函数y=cotx/(1-tanx^2)的定义域是

问题描述:

函数y=cotx/(1-tanx^2)的定义域是

y=cotx/(1-tanx^2)=1/tanx(1-tan^2x)
1-tan^2x≠0 tan^2x≠1 tanx≠±1 x≠kπ/2 +π/4 (k∈Z)
tanx≠0 x≠kπ (k∈Z)
x≠kπ/2 +π/4 且 x≠kπ (k∈Z)

分式有意义,1-tan²x≠0
tan²x≠1
tanx≠1且tanx≠-1
x≠kπ/2 +π/4 (k∈Z)
函数的定义域为(kπ/2,kπ/2 +π/4)U(kπ/2 +π/4,(k+1)π/2) (k∈Z)