如果某恒星的周年视差为0.56'',一月份到七月份地球移动的直线距离为3*10^11m,估算该恒星离我们的距离.

问题描述:

如果某恒星的周年视差为0.56'',一月份到七月份地球移动的直线距离为3*10^11m,估算该恒星离我们的距离.

周年视差??地球一周年后恒星视差小得看不到(由于地球与恒星之间极其遥远的距离)。
这题明显只能用三角视差法:距离=视差/地球公转轨道半径 (注意,视差不等于视角差,而是在公园轨道两端看恒星的夹角的一半!所以下面用 1.5 )
L=1.5*10^11m/0.56'' = 1.5*206265/056亿km = 5.52*10^16m = 1.8pc(秒差距)
结果可能算错数,但公式(过程)没错。

貌似上面的答案还应该乘以2,因为只有半年就移动了3E11m的距离。

角度 x = 0.56'' = 2.715E-06 rad
因为角度极小,所以基本可以认为 x = sin x = tg x
所以:距离 = 3E11 / x = 3E11 / 2.715E-06 = 1.1E17 m
也就是 1.1 * 10^17 m