求二元函数的最值

问题描述:

求二元函数的最值
长方体仓库,体积为1.5x(10^6)立方分米,前墙与屋顶的每单位造价分别是其他墙体的3倍和1.5倍,问如何设计使得造价最小?

设总费用为S,长为x,宽为y,高为h,h=1.5x10^6/xy,单位面积费用为z.
则前墙费用为3xhz,两个侧墙费用为2yhz,后墙费用为xhz,屋顶费用为1.5xyz.
则S=3xhz+2yhz+xhz+1.5xyz=z(4xh+2yh+xy)=z(6x10^6/y+3/x10^6x+xy).
此时运用均值不等式,得x=0.5x(10^5/2)x根号15,y=10^5/2x根号15,h=2时,S有最小值3x10^4x3次根号18