一劲度系数为k的弹簧竖直固定在桌上,将一小球放在弹簧上,弹簧被压缩d后平衡,然后按住小球使弹簧再被压缩c,且c>d,松开小球后,求小球上升到最高点所需的时间.

问题描述:

一劲度系数为k的弹簧竖直固定在桌上,将一小球放在弹簧上,弹簧被压缩d后平衡,然后按住小球使弹簧再被压缩c,且c>d,松开小球后,求小球上升到最高点所需的时间.

因为简谐振动图象(v-t)是正弦曲线,所以分两个阶段,简谐振动至压缩d处再至弹簧原长需t1=1/4+1/4*2/π*arccos(v/vm)个周期T,其中v竖直上抛初速度,vm为镇子最大速度且vm^2=k[(c+d)^2-d^2]/2-mgc.T=2π[(m/k)^(1/2)],又mg=kd,v求得如下所以t1=[1/2+1/2*2/π*arccos(1-d^2/c^2)]π[(d/g)^(1/2)]后轻弹簧弹到原长不动.物体竖直上抛至最高点,初速度v由机械能关系为mv^2=k[(c+d)^2]/2-mg(c+d),t2=v/g={k[(c+d)^2]-2g(c+d)}^(1/2)/g
总时间t=t1+t2=[1/2+2/π*arccos(1-d^2/c^2)]π(d/g)^(1/2)+{k[(c+d)^2]-2g(c+d)}^(1/2)/g整理得t={π/2+(c^2+d^2)^(1/2)+arccos[(1-d^2/c^2)^(1/2)]}(d/g)^(1/2)