如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.
问题描述:
如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.
答
设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70-x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70-x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70-x)+(70-x)=180°(4分)解得:x=20(5分)∴∠2=3x=60...
答案解析:所求角和∠1有关,∠1较小,应设∠1为未知量.根据∠COE的度数,可表示出∠3,也就表示出了∠4,而这4个角组成一个平角.
考试点:角平分线的定义.
知识点:本题隐含的知识点为:这4个角组成一个平角.应设出和所求角有关的较小的量为未知数.