计算:8(72+1)(74+1)(78+1)(716+1)(732+1).

问题描述:

计算:8(72+1)(74+1)(78+1)(716+1)(732+1).

原式=(7+1)(7−1)(72+1)6•(74+1)(716+1)(78+1)=16(72-1)(72+1)(74+1)(78+1)(716+1)(732+1)=16(74-1))(74+1)(78+1)(716+1)(732+1)=16(78-1)(78+1)(716+1)(732+1)=16(716-1)...
答案解析:根据代数式的性质:乘以(7-1),在除以6结果不变,可化成平方差的形式,根据平方差公式,可得答案.
考试点:平方差公式.


知识点:本题考查了平方差公式,乘以(7-1)除以6化成平方差的形式是解题关键.