一直函数f(x)=ax+b(sinx)^3+1满足f(5)=7,则f(-5)=?

问题描述:

一直函数f(x)=ax+b(sinx)^3+1满足f(5)=7,则f(-5)=?

显然g(x)=f(x)-1是奇函数,算出g(5)=6,
g(-5)=-g(5)=-6,
f(-5)=g(-5)+1=-5。。

f(5)=a*5+b(sin5)^3+1=7
a*5+b(sin5)^3=7-1=6
f(-5)=a*(-5)+b(sin(-5))^3+1
=-a*5-b(sin5)^3+1
=-(a*5+b(sin5)^3)+1
=-6+1
=-5

f(x)=ax+bsin³x+1
则:
f(-x)=a(-x)+bsin³(-x)+1
即:
f(-x)=-ax-bsin³x+1
则:
f(x)+f(-x)=2
因f(5)=7,则:f(-5)=-5

f(-5)
=-5a-bsin³5+1
=-(5a+bsi³5+1)+2
=-f(5)+2
=-5