A、B两车运货.若A单独运,则A车运的次数比B车少5次;如果两车合运,那么各运6次就能够运完.问A车单独运完这些货物需要多少次?A.9 B.10 C.13 D.15可否告诉我解题的最好办法?

问题描述:

A、B两车运货.若A单独运,则A车运的次数比B车少5次;如果两车合运,那么各运6次就能够运完.问A车单独运完这些货物需要多少次?
A.9 B.10 C.13 D.15
可否告诉我解题的最好办法?

法(1) ,
设A车单独运完这些货物需要X次 ,
则B车单独运完这些货物需要(X+5)次 ,
A车每次运(1/X)货物 ,
B车每次运[1/(X+5)]货物 ,
依题意得:
[(1/X)+1/(X+5)]*6=1 ,
(2X+5)*6=X(X+5) ,
X²-7X-30=0 ,
(X-10)(X+3)=0 ,
X1=10 , X2=-3 (不合题意,舍去) ,
∴ A车单独运完这些货物需要10次 。
∴ 选B :10 。
法(2) ,
∵ 两车合运6次就能够运完 ,
且单独运A车运的次数比B车少 ,
∴ 6*2=12 ,
∴ A车单独运完这些货物次数应少于12次 ,
∵ 可选的四个答案数字中少于12且最接近的只有10 ,
∴ 选B :10 。
法(3) ,
∵ 单独运,则A车运的次数比B车少5次;
而可选的四个答案数字中: 15-10=5 ,
∴ 选B :10 。
(此法有点取巧, 仅供参考, 不可实用)

方法1 列方程 设A运X次 则B运X-5次 则1/X + 1/X+5 =1/6 解出X=10
方法2 选项代入法 也就是看看选项中哪一项的1/X + 1/X+5 =1/6 很明显1/10 + 1/15 = 1/6
方法2的实质和方法1是一致的 但是为了在考上省时间 建议直接代入