计算2x(3+10x(3^2+1)x(3^4+1)x...x(3^32+1)+1

问题描述:

计算2x(3+10x(3^2+1)x(3^4+1)x...x(3^32+1)+1

2x(3+1)x(3^2+1)x(3^4+1)x...x(3^32+1)+1
=(3-1)x(3+1)x(3^2+1)x(3^4+1)x...x(3^32+1)+1
=(3²-1)x(3^2+1)x(3^4+1)x...x(3^32+1)+1
=(3^4-1)x(3^4+1)x...x(3^32+1)+1
=(3^32-1)x(3^32+1)+1
=(3^64-1)+1
=3^64

哈哈,坐等数学帝,你没分啊

2x(3+10x(3^2+1)x(3^4+1)x...x(3^32+1)+1
=(3-1)(3+1)(3^2+1).(3^32+1)+1
=(3^2-1)(3^2+1).(3^32+1)+1
=.
=3^64-1+1
=3^64
祝开心