解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)

问题描述:

解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)

解不等式:√(4-x2)+|x|/x>=0 (注:[ ]是绝对值)
:√(4-x^2)+|x|/x>=
Domain 4-x ^ 2> = 0 -2 the denominator of x is not equal to 0 if -2 | x | =- x
so √ (4-x ^ 2) -1 > = 0
√ (4-x ^ 2)> = 1
4-x ^ 2> = 1
x ^ 2 - √ 3 because -2 So - √ 3 = 0 Therefore,
√ (4-x ^ 2) +1> = 0
set up so

因为x作分母,所以x不等于0.当x>0,4-x^2+1>0,得x>根号5;当x0,得x根号5或x

x2是指x^2么?我先当是这样做了.
本题的关键在于对绝对值内正负的讨论
由于分母不能为0,显然x不等于0
当x>0时.原不等式转化为:x^2