如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( )A. 288种B. 264种C. 240种D. 168种
问题描述:
如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( )
A. 288种
B. 264种
C. 240种
D. 168种
答
知识点:本题主要考查排列组合的基础知识与分类讨论思想,属于难题.近两年天津卷中的排列、组合问题均处理压轴题的位置,且均考查了分类讨论思想及排列、组合的基本方法,要加强分类讨论思想的训练.
∵图中每条线段的两个端点涂不同颜色,
可以根据所涂得颜色的种类来分类,
B,D,E,F用四种颜色,则有A44×1×1=24种涂色方法;
B,D,E,F用三种颜色,则有A43×2×2+A43×2×1×2=192种涂色方法;
B,D,E,F用两种颜色,则有A42×2×2=48种涂色方法;
根据分类计数原理知共有24+192+48=264种不同的涂色方法.
答案解析:由题意知图中每条线段的两个端点涂不同颜色,可以根据所涂得颜色的种类来分类,当B,D,E,F用四种颜色,B,D,E,F用三种颜色,B,D,E,F用两种颜色,分别写出涂色的方法,根据分类计数原理得到结果.
考试点:排列、组合及简单计数问题.
知识点:本题主要考查排列组合的基础知识与分类讨论思想,属于难题.近两年天津卷中的排列、组合问题均处理压轴题的位置,且均考查了分类讨论思想及排列、组合的基本方法,要加强分类讨论思想的训练.