1.假设a,b,c大于等于2,求证:3(a+b+c)-8小于等于abc+c2.已知x,y大于0,x+y=1,求证:x的2n次幂+y的2n次幂大于等于2的2n-1次幂分之1

问题描述:

1.假设a,b,c大于等于2,求证:3(a+b+c)-8小于等于abc+c
2.已知x,y大于0,x+y=1,求证:x的2n次幂+y的2n次幂大于等于2的2n-1次幂分之1

对于第二题,用权方和不等式最简单:
x^(2n)+y^(2n)
=[x^(2n)]/[1^(2n-1)]+[y^(2n)]/[1^(2n-1)]
≥[(x+y)^(2n)]/[(1+1)^(2n-1)]
=[1^(2n)]/2^[(2n-1)]
=1/[2^(2n-1)].
即原不等式得证。

我先说第二题,第一题暂时还没找到方法.
第二题,
设f(x)=x^(2n)+(1-x)^(2n),
f'(x)=2n x^(2n-1)-2n (1-x)^(2n-1),
当x>=1/2时,f'(x)>=0,
当x