a^sin2B+b^sin2A=2absinC
问题描述:
a^sin2B+b^sin2A=2absinC
答
a^2sin2B+b^2sin2A=2absinC 作CD⊥AB于D a^2sin2B+b^2sin2A = 2a^2sinBcosB+2b^2sinAcosA = 2BD×CD+2AD×CD = 2AB×CD = 2absinC
a^sin2B+b^sin2A=2absinC
a^2sin2B+b^2sin2A=2absinC 作CD⊥AB于D a^2sin2B+b^2sin2A = 2a^2sinBcosB+2b^2sinAcosA = 2BD×CD+2AD×CD = 2AB×CD = 2absinC