已知函数f(x)在【0,1】上连续,在(0,1)上可微,且f(0)=1,f(1)=0,求证在(0,1)内至少存在一点c,使得f'(c)=-f(c)/c麻烦大虾了~小弟边做作业边等了o(∩_∩)o...大哥,我是在家里啊,等到图书馆要等到什么时候啊我是在做课后习题,中值定理一章,唉

问题描述:

已知函数f(x)在【0,1】上连续,在(0,1)上可微,且f(0)=1,f(1)=0,求证在(0,1)内至少存在一点c,使得f'(c)=-f(c)/c
麻烦大虾了~小弟边做作业边等了o(∩_∩)o...
大哥,我是在家里啊,等到图书馆要等到什么时候啊
我是在做课后习题,中值定理一章,唉

啊???
我才初一……

lagrange中值定理是吧?等等阿帮你找一下

构造函数 g(x)=xf(x) 显然g(x)在【0,1】上连续,在(0,1)上可微
因为 g(0)=0 g(1)=0 由罗尔定理有,存在一点c∈(0.1)使得g'(c)=0
这样就有 g'(c)=f(c)+cf(c)=0 移项变换就是f'(c)=-f(c)/c

陈文灯的考研指导书上有,去图书馆看一下