若集合M={0,1,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y∈M},则N中元素的个数为( )A. 9B. 6C. 4D. 2
问题描述:
若集合M={0,1,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y∈M},则N中元素的个数为( )
A. 9
B. 6
C. 4
D. 2
答
画出集合N所表示的可行域,知满足条件的N中的点只有(0,0)、(1,0)、(1,1)和(2,1)四点,
故选C
答案解析:本题主要考查集合中元素的个数,要用线性规划求出符合条件的整点,在可行域中找整点,要先找出关键点然后挨个列举
考试点:元素与集合关系的判断.
知识点:集合同线性规划结合的题目,符合高考精神,整点问题课本上只出现了一个例题,是解题过程中的弱点.