∫(x^3+1)/(x(1-x^3))dx

问题描述:

∫(x^3+1)/(x(1-x^3))dx

(1+x³)/[x(1-x³)]=(1+x³)/[x(1-x)(1+x+x²)]令(1+x³)/[x(1-x)(1+x+x²)]=A/(1+x+x²)+B/(1-x)+C/x,应用待定系数法,解得A=(1/3)(-4x-2),B=2/3,C=1原式变为(-2/3)∫(2x+1)/(x²+x...