若∑是由平面x+y+z=1及三个坐标面围成的立体表面外侧,则曲面积分∫∫∫(x+1)dydz+ydzdx+dxdy=
问题描述:
若∑是由平面x+y+z=1及三个坐标面围成的立体表面外侧,则曲面积分∫∫∫(x+1)dydz+ydzdx+dxdy=
答
用高斯公式计算即可,令P=x+1,Q=y,R=1,则P'x=1,Q‘y=1,R’z=0,所以原积分=∫∫∫(P'x+Q‘y+R’z)dxdydz=2∫∫∫dxdydz,根据三重积分的几何意义,∫∫∫dxdydz表示积分区域所构成立体的体积,本题中锥体体积=1/6,故原积分=1/3.