已知集合A={y|y=log(3)x,x>1},B={y|y=(1/3)^x,x>1}求A与B的交集.

问题描述:

已知集合A={y|y=log(3)x,x>1},B={y|y=(1/3)^x,x>1}
求A与B的交集.

集合A={y|y=log(3)x,x>1},由图象解得y>0
集合B={y|y=(1/3)^x,x>1},由图象解得0A与B的交集为{y|0

注意到集合A,B中代表元素是y
即为值域
A={y|y=log(3)x,x>1}
y单调递增
y>log3(1)=0
A=(0,+∞)
B={y|y=(1/3)^x,x>1}
y单调递减
0B=(0,1/3)
所以A∩B=(0,1/3)