函数导数的问题f(x)=x^2*sin1/x,当x不等于0时,利用导数公式f'(x)=2xsin1/x-cos1/x,它在x=0处无意义,但x=0处f(x)是可导的,因为f'(0)=lim[f(x)-f(0)]/(x-0)=lim(x^2sin1/x)/x=limxsin1/x,而有界量与无穷小的乘积是无穷小,所以f'(0)=0,导数存在.如果使用求极限的方式,求f'(x)在x=0处的左极限不存在,右极限也不存在,为什么不能得出该函数在f'(0)处不可导?

问题描述:

函数导数的问题
f(x)=x^2*sin1/x,当x不等于0时,利用导数公式f'(x)=2xsin1/x-cos1/x,它在x=0处无意义,但x=0处f(x)是可导的,因为f'(0)=lim[f(x)-f(0)]/(x-0)=lim(x^2sin1/x)/x=limxsin1/x,而有界量与无穷小的乘积是无穷小,所以f'(0)=0,导数存在.
如果使用求极限的方式,求f'(x)在x=0处的左极限不存在,右极限也不存在,为什么不能得出该函数在f'(0)处不可导?