求几道高中数学题目答案,都需要有过程,有点急,谢谢!1.函数Y=X+1/X (X.>0)的最小值是---------.2.已知正三棱锥的侧棱长是底面边长2倍,则侧棱与底面所成角的余弦值等于----------. → → → →3.已知向量 a = (1 , 1),b=(1+sin2x+cos2x , -1), 记f(x) = a · b .求f(x)的定义域、值域与最小正周期.4.已知数列{an }前n项的和为Sn,且 a1 = 2, 3Sn=5 an — an-1 +3Sn-1 (n>1).(1)求数列{an }的通项公式;(2)若bn= 4/ an ,求数列{bn}的前n项和Tn.5.已知椭圆 x2 / a2 + y2 / b2 =1 (a>b>0)的长半轴长为 根号2 ,离心率为(根号2)/ 2 .(1)求椭圆的方程(2)斜率

问题描述:

求几道高中数学题目答案,都需要有过程,有点急,谢谢!
1.函数Y=X+1/X (X.>0)的最小值是---------.

2.已知正三棱锥的侧棱长是底面边长2倍,则侧棱与底面所成角的余弦值等于----------.

→ → → →
3.已知向量 a = (1 , 1),b=(1+sin2x+cos2x , -1), 记f(x) = a · b .求f(x)的定义域、值域与最小正周期.


4.已知数列{an }前n项的和为Sn,且 a1 = 2, 3Sn=5 an — an-1 +3Sn-1 (n>1).

(1)求数列{an }的通项公式;(2)若bn= 4/ an ,求数列{bn}的前n项和Tn.


5.已知椭圆 x2 / a2 + y2 / b2 =1 (a>b>0)的长半轴长为 根号2 ,离心率为(根号2)/ 2 .

(1)求椭圆的方程(2)斜率为1的直线L经过椭圆的右焦点F,并且与椭圆交于A、B两点,求线段AB的长.


6.某公司将进货单价为40元的商品按每件50元出售时,每月能售出500件.若售价每上涨1元,其销售量就要减少10件.为了赚得最大利润,商品售价应定为每件多少元?

1.对x求导,得y'=1-1/x^2当y'=0时,能取得最小值,此时x=1,y=2
2.这个题很简单,楞与底面的角就等于楞与底面一条高的夹角,可以设底面边长为1,则楞长为2,过顶点向底面做垂线,中间过程自己画图吧,结果是根号3除以8
3楼主,这么多题,下次多给点分数。。。。

1.2;2.√5/15;3.定义域R,值域[-√2,√2],T=π;
4.下面我们不妨将第n+1项写作a (n+1)
(1)
a(n+1)=S(n+1)-Sn
=(1/3)[ 3S(n+1)-3Sn]=(1/3)[ 5a(n+1)-an]
整理得2 a(n+1)=an
显然an≠0,否则a1=0与 已知矛盾
故a(n+1)/an=1/2
即数列an是以a1=2为首项,公比q=1/2的等比数列
an=1/2^(n-2)
(2)
bn=4/an=2^n
即数列bn是以b1=2为首项,公比q=2的等比数列
故Tn= b1(1-2^n)/(1-2)=2^(n+1)-2

第一题是2变换X+1/X=(根号X-根号1/X)平方+2当X=1时最小值=2
第二题是根号3除以6,把底面三角形画出来,画上中点很好算

1.x=1时,最小值是2

1.y=X+1/X>=2√(x*1/x)=2,最小值=22.设底面正三角形边长X,侧棱L=2X,夹角a正三角形的高H=Xsin60度=√3/2X侧面等腰三角形的高h=√(L²-(x/2)²)=√[(2x)²-(x/2)²]=√(4x²-x²/4)=√15x/2co...