关于一道均值不等式的题的证明上的疑问p^3+q^3=2.根据立方和公式可得:3pq=(p+q)^2-2/(p+q).又由基本不等式可得:3pq

问题描述:

关于一道均值不等式的题的证明上的疑问
p^3+q^3=2.根据立方和公式可得:3pq=(p+q)^2-2/(p+q).又由基本不等式可得:3pq

这个推导不难
(p+q)^3-2=(p+q)^3-(p^3+q^3)=3qp(p+q)
所以3pq=[(p+q)^3-2]/(p+q)=(p+q)^2-2/(p+q)
又3pq