已知a,b,c为实数,且a+b+c=0,abc=1,求证:a,b,c三数中必有一个大于3/2.证明:由a+b+c=0及abc=1可知,a,b,c中只有一个正数、两个负数,不妨设a是正数,由题意得b+c=-a,又:bc=1/a; 于是根据韦达定理知,b,c是方程x^2+ax+1/a=0的两个根,又b,c是实数, 因此上述方程的判别式 △=a^2-4/a≥0因为a>0,所以a^3-4≥0,a^3≥4 a≥(4)^(1/3)>(3.375)^(1/3)=1.5; 这也就证明了a,b,c中必有一个大于等于1.5
问题描述:
已知a,b,c为实数,且a+b+c=0,abc=1,求证:a,b,c三数中必有一个大于3/2.
证明:由a+b+c=0及abc=1可知,a,b,c中只有一个正数、两个负数,不妨设a是正数,由题意得b+c=-a,又:bc=1/a; 于是根据韦达定理知,b,c是方程x^2+ax+1/a=0的两个根,又b,c是实数, 因此上述方程的判别式 △=a^2-4/a≥0因为a>0,所以a^3-4≥0,a^3≥4 a≥(4)^(1/3)>(3.375)^(1/3)=1.5; 这也就证明了a,b,c中必有一个大于等于1.5
答
a+b+c=0
abc=l
显然a,b,c都不为0
而a+b+c=0,所以a,b,c中肯定有正有负
而abc=1>0,所以a,b,c中有一正两负,设b,c是负数
那么,我们令b=-m, c=-n
这样就有:
a=m+n
amn=1
且a,m,n>0
1=amn=(m+n)mn=即(m+n)^3>4
即a^3>4
而4*8>27
即4>(3/2)^3
所以a^3>4>(3/2)^3
所以a>3/2
原结论成立。
答
如果 a,b,c 都 ≤ 3/2
由于 a+b+c=0 所以 三者必有一个 由于 abc=1 所以 三者中有两个 2* √6/3
即 a+b 9 - √96
所以 a + b + c