阅读探究有关个位数是5的整数的平方简便计算问题.观察下列算式:152=1×2×100+25=225;252=2×3×100+25=625;352=3×4×100+25=1225…(1)请你写出952的简便计算过程及结果;(2)其实这种方法也可以推广到个位数是5的三位数的平方,证明略.①请你写出1152的简便计算过程及结果.②用计算或说理的方式确定9852-8952的结果末两位数字是多少?(3)已知一个个位数是5的整数的平方是354025,请用方程的相关知识求这个数.
问题描述:
阅读探究有关个位数是5的整数的平方简便计算问题.
观察下列算式:
152=1×2×100+25=225;252=2×3×100+25=625;352=3×4×100+25=1225…
(1)请你写出952的简便计算过程及结果;
(2)其实这种方法也可以推广到个位数是5的三位数的平方,证明略.
①请你写出1152的简便计算过程及结果.
②用计算或说理的方式确定9852-8952的结果末两位数字是多少?
(3)已知一个个位数是5的整数的平方是354025,请用方程的相关知识求这个数.
答
知识点:考查规律性的数字问题及一元二次方程的应用;得到末尾数字是5的数的平方的计算规律是解决本题的关键.
(1)952=9×10×100+25=9025; (2)①1152=11×12×100+25=13225;②因为9852的末两位为25,而8952的末两位也为25,所以9852-8952的末两位数字都为零;(3)笼统地设未知数位上的数为x,由题意有x(x+1)×10...
答案解析:(1)结果=十位数字×(十位数字+1)×100+25;
(2)①结果=前两位数字×(前两位数字+1)×100+25;
②末两位数字都是25,那么可得相减后的末两位数字;
(3)可设未知数位上的数字为x,那么x(x+1)×100+25=354025,求得正整数x,进而加上最后一位上的5即可.
考试点:一元二次方程的应用.
知识点:考查规律性的数字问题及一元二次方程的应用;得到末尾数字是5的数的平方的计算规律是解决本题的关键.