设m为实数,函数f(x)=2x^2+(x-m)|x-m|,h(x)=f(x)/x x不等于0 0x=0 (1)若f(1)>=4,求m的取值范围(2)当m>0时,求证h(x)在[m,+∞)上是单调递增函数

问题描述:

设m为实数,函数f(x)=2x^2+(x-m)|x-m|,h(x)=f(x)/x x不等于0 0x=0 (1)若f(1)>=4,求m的取值范围(2)
当m>0时,求证h(x)在[m,+∞)上是单调递增函数

(1)
f(1)=2+(1-m)|1-m| ≥ 4
当m>1时,(1-m)(m-1) ≥ 2,无解;
当m ≤ 1时,(1-m)(1-m) ≥ 2,解得:m ≤ 1-√2
∴m的取值范围是:m ≤ 1-√2
(2)
∵m>0,x ≥ m
∴h(x)=f(x)/x
=[2x²+(x-m)(x-m)]/x
=[2x²+x²+m²-2mx]/x
=(3x²+m²-2mx)/x
=3x+(m²/x)-2m
任取m ≤ x1 ≤ x2,
则h(x2)-h(x1)
=[3x2+(m²/x2)-2m]-[3x1+(m²/x1)-2m]
=(3x2-3x1)+[ m²(x1-x2) /(x1x2) ]
=[3x1x2(x2-x1)+m²(x1-x2)]/(x1x2)
=[(x2-x1)(3x1x2-m²)]/(x1x2)
=(x2-x1)[(3x1x2-m²)/(x1x2)]
∵x2-x1>0,3x1x2-m²>3m²-m²>0,x1x2>0
∴h(x2)-h(x1)>0
即h(x1)<h(x2)
即h(x)在[m,+∞)为单调递增函数