如何真正理解并掌握比例法解应用题

问题描述:

如何真正理解并掌握比例法解应用题

第一步 判断题中的相关联的量成什么比例;
第二步 设未知项X
第三步 列出含有X的比例式;
第四步 解答并检验。

掌握比例法解应用题,要懂得各个量之间的关系
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
路程一定,时间和速度成反比
速度一定,路程和时间成正比
时间一定,路程和速度成正比
工作量=工作效率×工作时间;
工作时间=工作量÷工作效率;
工作效率=工作量÷所需时间.
下面以行程问题为例,就可以看出比例的应用了:
小华从甲地到乙地,3分之一骑车,三分之二乘车;从乙地返还甲地,五分之三骑车,五分之二乘车,结果慢了半个小时,已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
将全部路程看作单位1
前后两次骑车距离相差3/5-1/3=4/15
乘车和骑车速度比=路程比=30:12=5:2
那么时间之比=2:5
所以乘车用的时间是骑车的2/5
那么骑车行完4/15全程用的时间=(1/2)/(1-2/5)=5/6小时
那么骑车行完全程用的时间=(5/6)/(4/15)=75/24小时
那么全程=12×75/24=37.5千米
123、小强骑自行车从甲地到乙地需要3小时,如果先步行2千米,步行的速度是骑自行车速度的1/3,则晚到20分钟,那么甲乙两地相距多少千米?
20分钟=1/3小时
步行和骑车的速度比=1/3:1=1:3
时间比=3:1
步行2千米用的时间=(1/3)/(1-1/3)=1/2小时
步行速度=2/(1/2)=4千米/小时
骑车速度=4×3=12千米/小时
甲乙距离=12×3=36千米
124、A、B两地相距20km,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车要在距B地12km的C第相遇,求甲乙两人的速度?
甲乙速度比=路程比=1:2
乙行12千米,那么甲行12/2=6千米
所以甲30分钟=1/2小时行了20-12-6=2千米
甲的速度=2/(1/2)=4千米/小时
乙的速度=4×2=8千米/小时