已知x,y满足(x+2y)(x-2y)=-5(y2−65),2x(y−1)+4(12x−1)=0.求(1)(x-y)2;(2)x4+y4-x2y2.

问题描述:

已知x,y满足(x+2y)(x-2y)=-5(y2

6
5
),2x(y−1)+4(
1
2
x−1)=0.
求(1)(x-y)2;(2)x4+y4-x2y2

∵(x+2y)(x-2y)=-5(y2-65),∴x2-4y2=-5y2+6,∴x2+y2=6,∵2x(y-1)+4(12x-1)=0,∴2xy-2x+2x-4=0,∴xy=2,(1)(x-y)2=x2+y2-2xy=6-4=2;(2)x4+y4-x2y2=(x2+y2)2-2x2y2-x2y2=(x2+y2)2-3x2y2=36-...
答案解析:先化简(x+2y)(x-2y)=-5(y2-

6
5
),得x2+y2=6,再化简2x(y-1)+4(
1
2
x-1)=0得xy=2,再代入即可求出(1)(x-y)2;(2)x4+y4-x2y2
考试点:整式的混合运算.
知识点:本题考查了整式的混合运算,根据所给出的等式得出结论,再将它代入即可.