在△ABC中,2sin²A=3sin²B+3sin²C,并且cos2A+3cosA+3(B-C)=1,求三角形的三边之比∵2sin²A=3sin²+3sin²C,又A=π-(B-C),∴cosA=cos{π-(B+C)}=-cos(B+C)∴cos2A+3cosA+3cos(B-C)=1-2sin²A+3{cos(B-C)-cos(B-C)},请问下为什么∴cos2A+3cosA+3cos(B-C)会=1-2sin²A+3{cos(B-C)-cos(B-C)}?
问题描述:
在△ABC中,2sin²A=3sin²B+3sin²C,并且cos2A+3cosA+3(B-C)=1,求三角形的三边之比
∵2sin²A=3sin²+3sin²C,又A=π-(B-C),∴cosA=cos{π-(B+C)}=-cos(B+C)∴cos2A+3cosA+3cos(B-C)=1-2sin²A+3{cos(B-C)-cos(B-C)},请问下为什么∴cos2A+3cosA+3cos(B-C)会=1-2sin²A+3{cos(B-C)-cos(B-C)}?
答
A=π-(B-C),打错了,因该是A=π-(B+C)cosA=cos{π-(B+C)}=-cos(B+C)cos2A+3cosA+3cos(B-C) (cos2A=1-2sin²A) (cosA=-cos(B+C))代入:=(1-2sin²A)+3【-cos(B+C)】 +3cos(B-C) =1-2s...