已知A,B为常数,如果A/x-5+B/x+2=5x-4/x^2-3x-10,A,B的值是多少?1楼滴没智商就在家插秧,别出来咬人~

问题描述:

已知A,B为常数,如果A/x-5+B/x+2=5x-4/x^2-3x-10,A,B的值是多少?
1楼滴没智商就在家插秧,别出来咬人~

两边同乘(x+2)*(x-5) 得 A*(x+2)+B*(x-5)=5x-4
A*x+2*A+B*X-5*B=5X-4
求导数
A+B=5
X=1带入原方程
解得3A-4B=1
又因为A+B=5上解,所以A=3,B=2

A/x-5+B/x+2
=[A(x+2)+B(x-5)]/(x^2-3x-10)
=[(A+B)x+(2A-5B)]/(x^2-3x-10)=(5x-4)/(x^2-3x-10)

A+B=5
2A-5B=-4
解得
A=
B=2

A/[X-5]+B/[X+2]=[A(X+2)+B(X-5)]/[(X-5)(X+2)]=[(A+B)X+2A-5B]/[X^2-3X-10]=[5X-4]/[X^2-3X-10]
左右二边一一对应,则有:
A+B=5
2A-5B=-4
A=3
B=2
应该是这样

方法1:两边同乘(x^2-3x-10)
得到
A(X+2)+B(X-5)=5X-4
(A+B)x+2A-5B=5X-4
两个方程,2个未知数
A+B=5
2A-5B=-4
A=7
B=-2
方法2: x给一个数值,比如0,得到A,B的一个方程
x再给一个数值,比如1,又得到一个方程
两个方程,2个未知数,同样可以得到
方法一适合于大题,方法二适合于小题

A/x-5+B/x+2=5x-4/x^2-3x-10
A/(x-5)+B/(x+2)=(5x-4)/(x-5)(x+2)
[A(x+2)+B(x-5)]/(x-5)(x+2)=(5x-4)/(x-5)(x+2)
(A+B)x+2A-5B=5x-4
A+B=5
2A-5B=-4
A=3
B=2

当X=0
A/(-5)+B/2=-4/-10
当X=1
A/-4+B/3=(5-4)/(1-3-10)
A=3
B=2

左式:
A/(x-5)+B/(x+2)
右式:
(5x-4)/(x2-3x-10)
=[3(x+2)+2(x-5)]/[(x-5)(x+2)]
=3/(x-5)+2/(x+2)
左式=右式
A=3 ,B=2

左式:
A/(x-5)+B/(x+2)
右式:
(5x-4)/(x2-3x-10)
=[3(x+2)+2(x-5)]/[(x-5)(x+2)]
=3/(x-5)+2/(x+2)
A=3 ,B=2

A/x-5+B/x+2
=[A(x+2)+B(x-5)]/(x^2-3x-10)
=[(A+B)x+(2A-5B)]/(x^2-3x-10)=(5x-4)/(x^2-3x-10)
比较系数,得:
A+B=5
2A-5B=-4
解得
A=3
B=2

A/x-5+B/x+2=5x-4/x^2-3x-10其中x^2-3x-10可以写成(x-5)*(x+2)等式两边同时都乘以(x-5)*(x+2)的A*(x+2)+B*(x-5)=5x-4要使此等式成立需满足以下条件:A+B=5;2A-5B=-4解的A=3,B=2

到底是A/x-5+B/x+2=5x-4/x^2-3x-10;
还是A/(x-5)+B/(x+2)=5x-4/(x^2-3x-10);
还是别的,说清楚.

A/(x-5)+B/(x+2)
(5x-4)/(x2-3x-10) =[3(x+2)+2(x-5)]/[(x-5)(x+2)]
=3/(x-5)+2/(x+2)
A=3 ,B=2

两边同乘(x+2)*(x-5) 得 A*(x+2)+B*(x-5)=5x-4
A*x+2*A+B*X-5*B=5X-4
求导数
A+B=5
定值讨论:另X=1带入原方程,式子成立,满足定义域
解得3A-4B=1

又因为A+B=5上解,所以A=3,B=2

A/x-5+B/x+2
=[a(x+2)+b(x-5)]/(x+2)(x-5)=5x-4/x^2-3x-10
所以a(x+2)+b(x-5)]=5x-4
(a+b)x+(2a-5b)=5x-4
所以a+b=5
2a-5b=-4
2a+2b=10
7b=14
b=2
a=5-b=3
lhb

A/x-5+B/x+2
=[a(x+2)+b(x-5)]/(x+2)(x-5)=5x-4/x^2-3x-10
所以a(x+2)+b(x-5)]=5x-4
(a+b)x+(2a-5b)=5x-4
所以a+b=5
2a-5b=-4
2a+2b=10
7b=14
b=2
a=5-b=3