a3+b3+c3-3abc 怎么因式分解!

问题描述:

a3+b3+c3-3abc 怎么因式分解!

a^3+b^3+c^3-3abc
=(a^3+3a^2b+3ab^2+b^3+c^3)-(3abc+3a^2b+3ab^2)
=[(a+b)^3+c^3]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+2ab-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2+2ab-3ab-ac-bc)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)