√(y+2+3√2y+5)-√(y-2+√2y-5)
问题描述:
√(y+2+3√2y+5)-√(y-2+√2y-5)
答
根号(y+2+3根号(2y-5))-根号(y-2+根号(2y-5))=根号(y+根号(2y-5)+2)*根号(y+根号(2y-5)-2)=[根号y+根号(2y-5)]^2-4=y-4+根号(2y-5)根号(y+2+3根号(2y-5))-根号(y-2+根号(2y-5))=根号(y+根号(2y-5)+2)*根号(y+根号(2y-5)-2)请问这一步是如何得到的?谢谢。你题目有点问题√(y+2+3√2y+5)里面是-5吧?√{y+2+3√(2y-5)}= √{2y+4+6√(2y-5)}/√2= √2/2 ×√{2y+4+6√(2y-5)} = √2/2 ×√{2y-5 + 6√(2y-5) + 9} = √2/2 ×√{√(2y-5) + 3} ²= √2/2 ×{√(2y-5) + 3}= { √[2(2y-5)] + 3√2 }/2同理√(y-2+√2y-5)= { √[2(2y-5)] -√2 }/2√(y+2+3√2y+5)-√(y-2+√2y-5)= { √[2(2y-5)] + 3√2 }/2-{ √[2(2y-5)] -√2 }/2接下来自己合并一下吧题目刚开始我百度的,现在看看解题是错的,把前半部分的3给忘了,现在希望你能看懂,不懂再问