已知等比数列{an}的各项都是正数,且5a1,12a3,4a2成等差数列,则a2n+1+a2n+2a1+a2=(  ) A.-1 B.1 C.52n D.52n-1

问题描述:

已知等比数列{an}的各项都是正数,且5a1

1
2
a3,4a2成等差数列,则
a2n+1+a2n+2
a1+a2
=(  )
A. -1
B. 1
C. 52n
D. 52n-1

设等比数列的公比为q,其中q>0,则
因为5a1

1
2
a3,4a2成等差数列,
所以a3=5a1+4a2,即a1q2=5a1+4a1q,q2-4q-5=0,
解得q=5或q=-1(舍去),
所以
a2n+1+a2n+2
a1+a2
=q2n=52n
故选:C.