F1F2为椭圆C两焦点,P为C上动点,Q满足(PQ向量)=λ((PF1向量/|PF1|)-(PF2向量/|PF2|)){注意是中间是减},且PQ垂直于PF2,求Q点轨迹方程.

问题描述:

F1F2为椭圆C两焦点,P为C上动点,Q满足(PQ向量)=λ((PF1向量/|PF1|)-(PF2向量/|PF2|)){注意是中间是减},且PQ垂直于PF2,求Q点轨迹方程.
是PQ垂直于QF2

F1F2为椭圆C两焦点,P为C上动点,Q满足向量PQ=λ(PF1/|PF1|-PF2/|PF2|),且PQ垂直于QF2,求Q点轨迹方程.设F1(-c,0),F2(c,0),P(x1,y1),Q(x,y),|PF1|+|PF2|=2a,由向量PQ=λ(PF1/|PF1|-PF2/|PF2|),得(x-x1,y-y1)=λ[(-c-x1,...