设函数f(x)=|2x-1|的定义域和值域都是[a,b](b>a),则a+b=_.
问题描述:
设函数f(x)=|2x-1|的定义域和值域都是[a,b](b>a),则a+b=______.
答
因为f(x)=|2x-1|的值域为[a,b],
所以b>a≥0,
而函数f(x)=|2x-1|在[0,+∞)上是单调递增函数,
因此应有
,解得
|2a−1|=a |2b−1|=b
,
a=0 b=1
所以有a+b=1.
故答案为1