6、用配方法解下列方程x2-6x=-5 y2+3y-2=0 a2=6a-1 x2-4x+3=0 2y2+8y+7=0 - x2-3x=1(1)x2-6x=-5 (2、) y2+3y-2=0 (3) a2=6a-1 (4) x2-4x+3=0 (5) 2y2+8y+7=0 (6) - x2-3x=1

问题描述:

6、用配方法解下列方程x2-6x=-5 y2+3y-2=0 a2=6a-1 x2-4x+3=0 2y2+8y+7=0 - x2-3x=1
(1)x2-6x=-5 (2、) y2+3y-2=0 (3) a2=6a-1 (4) x2-4x+3=0 (5) 2y2+8y+7=0 (6) - x2-3x=1

x2-6x=-5
x2-6x+9=-5+9
(x-3)²=4
x-3=±2
x1=1
x2=5
y2+3y-2=0
y2+3y+2.25=2+2.25
(y+1.5)²=4.25
y+1.5=±0.5√17
y1=0.5√17-1.5
y2=-0.5√17-1.5
a2-6a=-1
a2-6a+9=-1+9
(a-3)²=8
a-2=±2√2
a1=2+2√2
a2=2-2√2
x2-4x+3=0
x2-4x+3+1=1
x2-4x+4=1
(x-2)²=1
x-2=±1
x1=1
x2=3
2y2+8y+7=0
y²+4y+3.5=0
y²+4y+3.5+0.5=0.5
y²+4y+4=0.5
(y+2)²=0.5
y+2=±√2/2
y1=√2/2 -2
y2=-√2/2 -2
- x2-3x=1
x2+3x=-1
x2+3x+2.25=-1+2.25
(x+1.5)²=1.25
x+1.5=±0.5√5
x1=√5 /2 -1.5
x2=-√5 /2 -1.5