对于在区间对[m,n]上有意义的两个函数f(x)和g(x),对任意x属于[m,n],均有|f(x)-g(x)|≤1那么我们称f(x)
问题描述:
对于在区间对[m,n]上有意义的两个函数f(x)和g(x),对任意x属于[m,n],均有|f(x)-g(x)|≤1那么我们称f(x)
那么我们称f(x)和g(x)在[a,b]上是接近的,y=x^2-3x+2与y=2x+3在[a,b]上是接近的否则称非接近,现在有二个函数f1(x)=㏒10(x-3a)与f2(x)=1/x-a(a>0,a≠1)给定区间[a+2,a+3],(1)若f1(x)与f2(x)在给定区间[a+2,a+3]上有意义,求a的取值范围(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是否接近
答
(1)要使f1(x)与f2(x)有意义,则有 {x-3a>0x-a>0a>0且a≠1要使f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,等价于:{a+2>3aa>0且a≠1所以0<a<1.(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的...