对于给定的自然数n,如果数列a1,a2,…,am(m>n)满足:1,2,3,…,n的任意一个排列都可以在原数列中删去若干项后的数列原来顺序排列而得到,则称a1,a2,…,am(m>n)是“n的覆盖
问题描述:
对于给定的自然数n,如果数列a1,a2,…,am(m>n)满足:1,2,3,…,n的任意一个排列都可以在原数列中删去若干项后的数列原来顺序排列而得到,则称a1,a2,…,am(m>n)是“n的覆盖列”.如1,2,1是“2的覆盖数列”;1,2,2则不是“2的覆盖数列”,因为删去任何数都无法得到排列2,1,则以下四组数列中是“3的覆盖数列”为( )
A. 1,2,3,3,1,2,3
B. 1,2,3,2,1,3,1
C. 1,2,3,1,2,1,3
D. 1,2,3,2,2,1,3
答
由定义得,A不是“3的覆盖数列”,因为删去任何数都无法得到排列3,2,1.
B不是“3的覆盖数列”,因为删去任何数都无法得到排列3,1,2;
D不是“3的覆盖数列”,因为删去任何数都无法得到排列3,1,2;
而C则符合要求.
故选 C.