已知a,b,c是不为0的整数,且14/3×a=2/7×b=35/6×c,则a,b,c这三个数中谁最大,谁最小?
问题描述:
已知a,b,c是不为0的整数,且14/3×a=2/7×b=35/6×c,则a,b,c这三个数中谁最大,谁最小?
这里的14/3或几表示三分之十四以此类推
答
14/3×a=2/7×b=35/6×c
先乘以3、7、6的最小公倍数42,除去分母
得196a=12b=245c
因为b乘以一个最小的数12可以与196a和245c相等,
所以b最大
因为c乘以一个最大的数245才能和12b和196a相等,
所以c最小