求解(-2)的100次方减去(-2)的101次方

问题描述:

求解(-2)的100次方减去(-2)的101次方

(-2)的100次方

(-2)^100-(-2)^101
=(-2)^100-(-2)*(-2)^100
=(-2)^100*(1+2)
=3*2^100

原式=2的100次方-(-2的101次方)
=2的100次方+2*2的100次方
=(1+2)*2的100次方
=3*2的100次方



(-2)的100次方减去(-2)的101次方
=2^100+2^101
=3x2^100