平行四边形的内角分别为120,60,120,60度,且一边为其邻边的两倍,问此平行四边形的一条对角线与其一条边
问题描述:
平行四边形的内角分别为120,60,120,60度,且一边为其邻边的两倍,问此平行四边形的一条对角线与其一条边
问此平行四边形的一条对角线与其一条边垂直?
答
对.已知,平行四边形ABCD中,∠A=∠C=60°,∠B=∠D=120°,而且AD=2AB;则 BD⊥AB.证明如下:取AD中点E,连接BE、BD,则有:AE = DE = AD/2 = AB ,在等腰△ABE中,∠A= 60° ,可得:△ABE是等边三角形,则有:BE = AE = D...