已知a+b+c=1,a,b,c为不全相等的实数,求证:a²+b²+c²>1/3:a²+b²≥2ab,a²+ c²≥2ac,b²+c²≥2bc因为a,b,c为不全相等的实数,故:上面三式不能同时取等号(这句话有什么用).故:2(a²+b²+c²)≥2ab+2bc+2ac故:3(a²+b²+c²)≥(a+b+c) ²=1(这步怎么来的)故:a²+b²+c²>1/3
问题描述:
已知a+b+c=1,a,b,c为不全相等的实数,求证:a²+b²+c²>1/3
:a²+b²≥2ab,a²+ c²≥2ac,b²+c²≥2bc
因为a,b,c为不全相等的实数,故:上面三式不能同时取等号(这句话有什么用).
故:2(a²+b²+c²)≥2ab+2bc+2ac
故:3(a²+b²+c²)≥(a+b+c) ²=1(这步怎么来的)
故:a²+b²+c²>1/3
答