利用和差角公式化简 (2)sin(π/3+α)+sin(π/3-α)

问题描述:

利用和差角公式化简 (2)sin(π/3+α)+sin(π/3-α)
(2)sin(π/3+α)+sin(π/3-α)
(3)cos(π/4+α)-cos(π/4-α)
(4)cos(60°+α)+cos(60°-α)
(5)sin(α-β)cosβ+cos(α-β)sinβ
(6)cos(α+β)cosβ+sin(α+β)sinβ

(2)原式=[sin(π/3)cosα+cos(π/3)sinα]+[sin(π/3)cosα-cos(π/3)sinα]
=2sin(π/3)cosα
=2(√3/2)cosα
=√3cosα.
(3)原式=[cos(π/4)cosα-sin(π/4)sinα]-[cos(π/4)cosα+sin(π/4)sinα]
=-2sin(π/4)sinα
=-2(√2/2)sinα
=-√2sinα.
(4)原式=[cos(60°)cosα-sin(60°)sinα]+[cos(60°)cosα+sin(60°)sinα]
=2cos(60°)cosα
=2(1/2)cosα
=cosα.
(5)原式=sin[(α-β)+β]=sinα.
(6)原式=cos[(α+β)-β]=cosα.