计算?(log 2^5+log4^125)(log5^4+log25^64)
问题描述:
计算?(log 2^5+log4^125)(log5^4+log25^64)
答
解:(log 2^5+log4^125)(log5^4+log25^64)=(log2^5+6/2log2^5)(2log5^2+6/2log5^2)=5/2log2^5×4log5^2=5/2×4=10
答
=(log2(5)+(3/2)log2(5))(2log5(2)+3log5(2))
=(5/2)log2(5)*5log5(2)
=(25/2)(lg5/lg2)*(lg2/lg5)
=25/2